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The energy transfer and small-scale intermittency in decaying turbulence in four dimensions (4D) are
studied by direct numerical simulation and by spectral theory in comparison with three dimensions (3D). The
energy transfer is more efficient in 4D than in 3D, hence the exponent of energy decay is larger. The Kolmog-
orov constant is 1.31, which is smaller than 1.72 in 3D. The longitudinal third-order structure function is
confirmed to be governed by a 1/2 law, —(1/2)&r, instead of a 4/5 law in 3D. The intermittency is weaker in
4D for the total dissipation rate vX; (du j/&x,-)2 and the associated velocity difference (spherical velocity
difference) on scale r than in 3D, while it is slightly stronger for the surrogated dissipation rate v(du,/dx;)* and
the associated longitudinal velocity difference. The scaling exponents of the spherical and longitudinal velocity
differences are also evaluated, indicating that the spherical velocity difference is less intermittent in 4D, while
the longitudinal difference is more intermittent in 4D. The distribution of the eigenvalues of the strain tensor
is also examined. It was also found that the normalized variance of the pressure gradient £321"2((Vp)?) in
4D is smaller than in 3D. The roles of the incompressibility condition, the pressure gradient, and the intermit-
tency in d-dimensional turbulence are examined, and the importance of the longitudinal component of turbu-
lent velocity field in the energy transfer toward small scales are discussed. Burgers turbulence as the asymptote

of turbulence in large dimension is suggested.
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I. INTRODUCTION

Turbulence transfers energy from large to small scales of
motion directly or stepwise in scale (the cascade process). As
the energy is transferred downward in scale, the intermit-
tency of the turbulent field builds up, and the scaling expo-
nents of the velocity field deviate from Kolmogorov K41
scaling [1]. The energy transfer dynamics and intermittency
are among the most important problems in the fundamental
physics of turbulence. It is well known, however, that these
problems have resisted solution for centuries despite many
attempts to solve them.

To make progress, it is useful and important to put the
problems in a wider context, for example, by relaxing the
dimensional constraint, incompressibility condition, and so
on. By doing so, we can find the deeper physical significance
of those constraints for turbulence dynamics, which may
help us to find answers to the above problems. Here we
consider the effect of increasing the spatial dimension from
three to four. Relevant questions are whether the energy
transfer toward small scales of motion is enhanced or dimin-
ished, whether intermittency becomes stronger or weaker,
and whether a critical dimension exists beyond which the
scaling exponents obey K41 scaling. Some of these questions
are motivated by the success of the statistical mechanical
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theory of critical phenomena, in which the dimension plays
an essential role in understanding the physics of the fluctua-
tions [2]. There have been a few theoretical works concern-
ing the effects of dimension on turbulence [3-6], but no con-
clusive results for the effects of dimension on scaling of the
energy spectrum because a simple analytical theory of turbu-
lence which is free from arbitrary assumptions was not avail-
able and computer power was inadequate to simulate turbu-
lence in four dimensions. During the last decade, the scaling
exponents of a passive scalar field convected by an artificial
Gaussian velocity field have been extensively studied. The
exponents are found to approach normal scaling as the di-
mension increases [7-9], but our knowledge of the scaling
exponents of the velocity field remains limited.

Recent dramatic increases in computer power enable us to
examine the effects of the dimension on turbulence directly
and to make the theoretical predictions meaningful by com-
paring them to numerical results [ 10]. This paper presents the
first full report on the effects of dimension on turbulence
dynamics and statistics using both direct numerical simula-
tion (DNS) of decaying isotropic turbulence and a spectral
theory of turbulence.

The findings are briefly summarized. (1) The energy
transfer is more efficient in 4D than in 3D. (2) The intermit-
tency in the energy dissipation rates depends on the type; it is
weaker for the total dissipation rate in 4D, but slightly stron-
ger for the surrogated one along a longitudinal direction. (3)
The above observation indicates that we have to consider
two types of the velocity differences, the usual longitudinal
one and the newly introduced spherical one; the former is
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more intermittent in 4D, while the latter is less so.

The present paper is organized as follows. In Sec. II the
Navier-Stokes equation in any dimension is presented. The
velocity derivative is expressed in the 2-form, the general-
ized version of the vorticity in 3D. The effects of the addi-
tional invariant are discussed, suggesting the energy cascade
toward small scales. In Sec. III the energy spectrum and
Kolmogorov constant in d dimensions are discussed in terms
of a spectral theory of turbulence. Section IV is devoted to
the DNS and the statistical properties of the simulated turbu-
lences. In Sec. V the dimensional dependence of the
Karman-Howarth-Kolmogorov equation is studied. Degree
of the intermittency of the various energy dissipation rates
and velocity differences are investigated in Secs. VI and VII.
To estimate the degree of the intermittency quantitatively we
calculate the scaling exponents of the longitudinal and
spherical velocity differences with the use of the extended
self-similarity (ESS) in Sec. VIII [11]. In Sec. IX the distri-
bution of the eigenvalues of the strain tensor is also investi-
gated in comparison with 3D. In Sec. X the dimensional
effects on the incompressibility condition and the role of the
pressure gradient are discussed in relation to the intermit-
tency and Sec. XI is the summary.

II. BASIC EQUATIONS
A. Navier-Stokes equations

The Navier-Stokes equation for an incompressible fluid
with unit density in any number of space dimensions is writ-
ten as

A 9 2
_l+u]Q]l=__<p+uz)+VAul’ (2.1)

ot ox;

1
where p is the pressure and v the kinematic viscosity, and

=
J (9)6,» (9xj

(2.2)

is the 2-form of the velocity field, the 4D counterpart of
vorticity in 3D. Throughout this paper we employ the con-
vention that the summation is taken over repeated indexes
without stated otherwise.

Multiplying Eq. (2.1) by u; and taking the summation
over i,

d1 J (1 d( ou, du; \?
——uiz+ —(—ulz +p>uj= V—(u,-—') - v(—l>
(9t2 (9)(:1 2 &xj &xj dxi

d vV,
= V_“iﬂji - EQ”

r (2.3)

Integrating Eq. (2.3) over the entire domain and by using the
homogeneous boundary condition, we find that the total en-
ergy decays in time

J 1
—f —u?dx:-zj QizjdxﬁO.
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Two types of the energy dissipation rates are introduced
for later convenience:
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The equation for the 2-form is readily derived from Eq.
(2.1) as

J
%Q”*_uk_Qij+Q[kskj+sikaj= VAQ (27)
k

Y o i

where s;; is the strain rate tensor defined as s;;=(du;/dx;

+du;/ dx;)/2. In the framework where s;; is diagonal, i.e.,

5;7=N;6;j, Eq. (2.7) becomes
J J

Hence the 2-form ();; is amplified at a rate —(\;+\;) in ac-

cordance with the three-dimensional case.

B. Inviscid invariants and their effects on the energy cascade

The inviscid invariants play important roles in turbulence.
In two dimensions energy as well as enstrophy are con-
served, and the conservation of the enstrophy prohibits the
energy cascade toward high wave numbers [12,13]. Accord-
ing to the previous studies [14,15] there are two types of
inviscid invariants depending on the parity of the dimension;
in even dimensions d=2m, where m is an integer, the energy
E=[(u?*/2)dx and

L= | aoryas 2.9
are conserved, where dv is the velocity 2-form, (dv)™ the
antisymmetric multiple product of dv of order m, and f an
arbitrary function. Since dv is nothing but the vorticity w in
two dimensions, Eq. (2.9) means that the spatial integral f(w)
is conserved. In four dimensions (dv)? is explicitly written as
(dv)*=Q1p034= Q13094+ 0, Qs5.

In odd dimensions d=2m+1, on the other hand, the en-
ergy and

I,= f v A (dv)"dx (2.10)
are conserved. In three dimensions it is the helicity.

Assume that the velocity field with the typical velocity u,
and wave number k is initially excited. The initial transfer
flux of the energy by the nonlinear interactions is H~k0u8,
while the initial energy dissipation rate is &~ v|€);[*
~ v(koup)?, by a factor vky/uy~ 1/R, smaller than the trans-
fer rate. In order that the energy cascade may be realized, &
mHzSt balance II, so that {);; should be amplified by the factor
R~

In two dimensions the invariant theorem states that the
volume integral of any function of dv={),=w is conserved,
which implies that w® remains of the order of (ku)?, the
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initial value. Therefore the energy dissipation £= vw?® cannot

match I, meaning the prohibition of the energy transfer to
small scales of motion [12,13]. It is obvious that the energy
dissipation rate £=vw’ vanishes in the inviscid limit.

In the case of d=4, the energy dissipation is again given
by the integral of the sum of the square of each component
);; as in Eq. (2.6), assuring the positive definiteness. On the
other hand, the invariant

12=f (dv)zdx=f(912034—Ql3ﬂz4+014923)dx

(2.11)

is given by the integral of the sum of the second-order prod-
ucts of the form of €;,();{);, where €, is the alternative
unit tensor of rank 4, so that 7, is not positive definite. It is
very unlikely that the invariant I, (and those constructed by
any function f) bounds the integral of the sum of the square
of each component (); (i.e., the energy dissipation). With
this argument and the fact that there exist terms to amplify
Q;;in Eq. (2.7) [or Eq. (2.8)], it is very natural to expect that
the energy dissipation & can match the nonlinear transfer flux
I1, and the energy in 4D cascades to small scales as in 3D.

In three dimensions, it is well known that there exists an
invariant other than the energy, the helicity given by Eq.
(2.10)

f (M1023 + M2031 + M3le)d.x = f u- wd.x -~ O(RS),

which is not positive definite. Since # and w are locally
aligned at random in isotropic turbulence, the situation that w
is of order of Rel,/zkouo but the spatial average of u-w is of
order of koué can be realized; the energy dissipation rate ve?
matches the energy transfer. However, it is known that the
helicity attenuates the energy transfer to some extent [16,17].
From the above arguments, it seems reasonable to conclude
that in 4D the energy cascades to small scales of motion as in
3D but the efficiency of the energy transfer might be differ-
ent due to the inviscid invariants.

III. SPECTRAL THEORY

When turbulence is incompressible, homogeneous, and
isotropic, the fundamental statistical quantity of importance
is the energy spectrum. The spectral theory of turbulence
provides a general view about evolution of the energy spec-
trum and dynamics in d dimensions. Under the periodic
boundary condition with periodicity L, we expand the ve-
locity field in terms of the Fourier series:

u(x,t)= >, ulk,t)e ™=, (3.1)
k

u(k,t)=L%fu(x,t)eik'xdx. (3.2)

box

When L, — %, the sum becomes the integral over the wave
vectors. In the DNS study we chose Ly, =2, so that each
component of d-dimensional wave vector k=(k;,k,,k3,k,) is
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a four-dimensional integer vector. The total energy, the en-
ergy spectral density, and the energy spectrum are defined as

E(f) = URO) = ‘—152 = f ’ E(k,0)dk, (3.3)
2 2 0
Lo _ 27"
E(k’t) = 2Sdk Q(k7t)5 Sd_ F(d/2) > (34)
1
(uik,0)u,(~ k1)) = ﬂPi,-(k)Q(k,t), (3.5)

where k=|k|, S, is the surface area of the d-dimensional
sphere of a unit radius, I'(x) is the Gamma function, and
P,(k)=68;—kk;/k*. The energy equation is then written as
d 2
P +2vk” |E(k,t) = T(k,1), (3.6)

where T(k,?) is the energy transfer function. Energy conser-
vation by the nonlinear term means the property

f T(k,t)dk=0, (3.7)
0
and then the energy transfer flux is defined as
% k
(k1) = f T(k',0)dk' = —f T(k',r)dk' . (3.8)
k 0

Also the average energy dissipation rate per unit mass is
defined by

g=2v f K E(k)dk. (3.9)

0

One of the difficulties of turbulence problems is that
T(k,1) is not expressed in a closed form. Spectral theory of
turbulence yields a closed set of equations for T(k,7) and has
long been studied in the past. For the details, readers may
refer to [18-21]. Among the spectral theories, we use the
Lagrangian renormalized approximation (LRA) by Kaneda
[22,23]. In LRA, (1) the energy spectral density, Lagrangian
two time velocity covariance, and Lagrangian response func-
tion are fundamental quantities, (2) a closed set of equations
is derived in a fully systematic way by using the renormal-
ized expansion, therefore (3) no ad hoc parameters are intro-
duced, and (4) the equations are Galilean invariant. More-
over, (5) the fluctuation-dissipation relation holds, (6) it
yields the Kolmogorov scaling in the inertial range in 3D and
the Kolmogorov constant 1.72 which is consistent with the
experiments and DNS, and (7) it results in good predictions
for low-order statistics such as the Lagrangian velocity auto-
correlation, and so on [24,25]. Explanation and derivation of
the LRA equations are described in Appendix A.

In this section we assume that the energy spectrum is
normalized in the sense of Kolmogorov, that is, the finite
energy dissipation rate € exists and the energy spectrum is
expressed in terms of the Kolmogorov variables as
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FIG. 1. Variation of the Kolmogorov constant computed by the
LRA with respect to the spatial dimension d. Straight line shows the
asymptotic value K,,=0.815.

E(k) = (8v)) "k,

where 7 is the Kolmogorov length. If the Reynolds number
is infinite and the intermittency effects are neglected, and if
there exists the inertial range in d dimensions, then the en-
ergy spectrum is given by

(3.10)

E(k) = K3k, (3.11)

The LRA equations are consistent with the above scaling. We
have computed the Kolmogorov constants in d dimensions in
the infinite limit of the Reynolds numbers as

K,=741, K;=1.72,

K, =131, (3.12)

where the value K, is the constant in the energy inverse
cascading range (previously we reported as K,=1.28 [10]
which was slightly underestimated).

Figure 1 shows variation of the Kolmogorov constant K
with d. The K, is a monotonically decreasing function of d
and tends to a finite value

162 .
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FIG. 2. Relaxation of the ITS to the equilibrium energy spec-
trum E(k) k2 in 3D.
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K. =0.815, (3.13)

when d becomes infinite.
The energy flux in LRA is given by

o

Hd(k’t):Sdef dk,
k

3 d-2(1 _ ,2\(d=3)12;,(d)
XJfAdpqu (pq)(1=x7) byrng

xf Gd(k”f,S)Gd(PJ,S)Gd(‘]aI,S)Q(%S)

0

X[0Q(p,s) — Q(k,s)]ds, (3.14)

r\’ p
bgjq:d(z) (1—x2)+z(2z3—3z—xy), (3.15)

__Sa-1

No= o (3.16)

As described in Appendix A, when the spatial dimension d is
increased, (1) SN, rapidly decreases for large d, (2) the geo-
metric factor b](( tends to be dominated by the convective
term and the part arising from the pressure becomes rela-
tively smaller, (3) the effective number of the triad interac-
tions contributing to I1; becomes smaller, and (4) the eddy
damping factor u,(k,s") of the Lagrangian response func-
tion, which appears as Gy(k,1,s) = exp[—[ uq(k,s")ds"], de-
creases as d>.

Since u;<((Vp)?) as explained in Appendix A, the
above facts (2) and (4) suggest that in the large dimensions
the spectral dynamics resembles that of the passive scalar or
Burgers turbulence in which the pressure term is absent and
the energy is transferred only through the convective term.
Therefore as far as the kinetic energy transfer is concerned,
the role of the pressure becomes less and less as the spatial
dimension increases.

Decrease of the eddy damping factor with the spatial di-
mension leads to the following effects. First, the past history
of the velocity along the Lagrangian fluid particle path be-
comes more persistent so that the deformation of a small
fluid blob also proceeds more effectively, increase of the
triple relaxation time, which results in enhancement of the
energy transfer to small scales. As a result, the Kolmogorov
constant becomes smaller but tends to a finite constant be-
cause the above facts (1), (2), and (3) compensate the in-
crease of the triple relaxation time. Second, the viscous ef-
fects relatively increase. Then the Kolmogorov length is

given by
3\ 1/4
14
- d3/4<_>
Nd s

(3.17)

[see Appendix A, Eq. (A31)]. The Kolmogorov length in d
dimensions increases with @*4, implying that a much higher
Reynolds number is required to attain the asymptotic inertial
range.
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TABLE 1. DNS parameters and statistical quantities at initial time. M is the number of sampling runs. k., 7 is larger than unity for all

runs, the minimum value being 1.04 for Run 3C.

Run d Type ko N M 102y E g Ry 10?7 Ny L7y
4A 4 I 4 644 2 2.00 1.97 1.59 24.7 3.99 12.5 15.6
4B 4 I 4 128 1 1.00 1.99 0.802 54.3 2.81 19.4 25.9
4C 4 I 4 128* 1 0.500 2.01 0.402 110 1.99 27.6 35.8
4D 4 II 16 256 1 0.400 2.00 491 349 1.07 13.1 16.4
4E 4 II 16 256 1 0.300 2.00 3.68 46.5 0.926 15.1 18.9
4F 4 I 4 256 1 0.320 2.00 0.304 152 1.81 26.8 34.1
3A 3 I 4 64 18 2.00 1.45 1.21 24.1 5.07 9.83 12.1
3B 3 I 4 1283 6 1.00 1.47 0.600 48.8 3.59 13.8 17.4
3C 3 I 4 1283 6 0.500 1.48 0.300 98.6 2.54 19.5 245
3D 3 11 16 256 1 0.400 1.50 3.83 31.2 1.14 11.0 13.8
3E 3 i 16 256° 1 0.253 1.50 2.42 49.4 0.904 13.8 17.4
3F 3 I 4 256 1 0.380 1.50 0.218 128 2.24 21.7 28.3
3G 3 i 32 10243 1 0.100 1.50 3.84 62.4 0.402 15.5 19.5

IV. DIRECT NUMERICAL SIMULATIONS AND LOW-
ORDER STATISTICS

A. DNS parameters and initial conditions

The Navier-Stokes equations in three and four dimensions
were numerically integrated under the periodic boundary
condition with periodicity of 27 for each direction. The
pseudo spectral method was used to compute the convolution
sum, and the time advancing was done by the fourth-order
Runge-Kutta Gill method. The details of the DNS are found
in Ref. [26].

The initial random solenoidal velocity fields with given
energy spectrum were generated by using the Gaussian ran-
dom numbers. Three types of the initial energy spectra were
used to examine the effects of the spatial dimensions on de-
cay process, statistical invariants, spectrum evolution, and
intermittency. They are

E;(k,0) = Auky (klky)* exp[— 2(klko)?], (4.1)

d+1
En(k,0) = Baugky' (klkg) ™! exp(— T(k/ko)2), (4.2)

E(k,0) = Boudky (kiko) ™" exp[ - 3 (kiko)?].  (4.3)

The type I spectrum with ky=4 was chosen to examine the
relaxation toward the absolute equipartition state of the in-
viscid truncated system (see the next subsection) and the

TABLE II. Decay exponent of the total energy.

Run (3D) NDNS NTheory Run (4D) NpNs NTheory
3A 1.35 1.42 4A 1.60 1.50
3D 1.33 1.42 4D 1.62 1.50
3E 1.38 1.42 4E 1.62 1.50
3G 1.42 1.42

decay process. For the type II spectrum, a relatively large
value for the energy peak wave number ky=16 was chosen in
order to study the invariance of Loitsyanskii integral. The
type III spectrum with ky=4 was for high Reynolds number
computations. We chose uy=1 for all runs and the constants
A, By, and B(;, were so chosen that the total energy was
d(u}/2). Note that the energy per velocity component is the
same in both dimensions. The spatial resolution is up to 2563
or 256*. The DNS parameters and the statistical quantities at
initial time are given in Table I, in which L, \, and R, are the
integral scale, the Taylor microscale, and the Taylor micro-
scale Reynolds number, respectively. The convergence of
statistical quantities in 4D is excellent because of very large
number of sample data, while that in 3D is not enough for
some cases. Therefore when it was needed, the ensemble
average over several (M) random initial velocity fields was
taken.

102 : ]
kotegt=0.0 —— |
kouot=0.8

101 L kotgi=1.6 .

10° ]

kougPE (k)
S

1074 .

1 10
kiko

FIG. 3. Relaxation of the ITS to the equilibrium energy spec-
trum E(k) k> in 4D.
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Since the speed of the decay of turbulence differs in both
dimensions, the comparison was made at times for which the
Reynolds numbers were the same and as large as possible.
This required extra computations to obtain appropriate pa-
rameters for fair comparison. The comparison of the spectra
and statistics related to the intermittency was mostly done at
the time soon after the energy dissipation attained maximum.

B. Inviscid truncated system

When the d-dimensional Euler equation is expressed in
terms of the Fourier modes under the periodic boundary con-
dition and truncated at finite wave number, such a system of
the Fourier modes is the inviscid truncated system (ITS). In
ITS, the invariants become very few, for example, the energy
and (dv)? in 4D. If only the energy constrains the equilib-
rium state of ITS, then an equipartition among the Fourier
modes Q,-j(k):d%lP,-j(k)C (C is a constant) is attained and
leads to the absolute equilibrium energy spectrum E (k)
ockd1[21,27,28].

It is interesting to see whether ITS in d dimensions re-
laxes to the absolute equipartition state. Figures 2 and 3
show the relaxation of the energy spectrum from the initially
localized spectrum (E;) to k"' spectrum. It follows that the
energy spectrum of the ITS tends to k* and & in three and
four dimensions, respectively. This means that the energy is
transferred toward higher wave numbers in 4D too. The ap-
proach toward the equilibrium spectrum in 4D is seen to be
faster than that in 3D, which is consistent with the efficient
energy transfer in LRA prediction.

C. Energy decay and Loitsyanskii integral

The decay of the normalized turbulent energy is shown in
Fig. 4. It is easily found that the decay of the total energy in
4D is faster than that in 3D, which means rapid decay of the
Reynolds numbers in 4D when compared to the case in 3D
(figure not shown).

When the curves of E(¢)/E(0) are plotted in log-log scale,
there exist approximately straight portions in the curves. We
fitted the curves by the formula (¢—¢,)™", where 7,=0, and
measured the decay exponents n’s for several runs and com-
pared in Table II. It is seen that the measured values of the
decay exponents in 4D are larger than those in 3D. This is

PHYSICAL REVIEW E 75, 016310 (2007)
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FIG. 4. The decay of the total energy. The decay exponent is
larger in 4D (Run 4D) than in 3D (Runs 3D and 3G). Straight lines
show the slope computed by using the Loitsyanskii integral, 1.50
for 4D and 1.42 for 3D, respectively.

consistent with the theoretical prediction which assumes in-
variance of the Loitsyanskii integral defined by

o]

L,(t) =2i%(1)S, f (0 dr, (4.4)

0

where ﬁz(t)f(r,t)=<u(x+r,t)u(x,t)):ff is the longitudinal
correlation function of the velocity and 7#=r/r (the math-
ematical details are given in Appendix B). A simple argu-

ment assuming the self-similarity of f at large-scale velocity
field and the invariance of L, yields the formula

n=2(d+2)/(d+4), (4.5)

which gives n=10/7 for d=3 and n=3/2 for d=4, respec-
tively [29-32].

It is interesting to examine to what extent L,(¢) is invari-
ant during the decay process. It is well known that L; is
related to the coefficient of the Taylor expansion of E(k) at
k=0 as (see Appendix B)

E (k) =ck™ + -+, (4.6)
Sd 2

——d 2L 4.7

AT 20mAd+ 1) o “.7)

TABLE III. Turbulence parameters for comparison at time kyuor=2.0 in Runs 4A and 3A, kyuyt=2.8 in Runs 4B and 3B, and kqut
=3.4 in Runs 4C and 3C, which are the time soon after the enstrophy has attained peak values. [o'ff)]z, [o'ff)]z, 9 and KZI) are the variances,
skewness, and flatness of the longitudinal (a=L) and transverse (a=T) velocity gradients, respectively.

o’

Run E g R\ Kmax 7 N7y Lin [0'(Ld)]2 [O'(Td)]z S(Ld) S(Td) K(Ld) K(Td)
4A 1.07 1.67 13.6 1.41 8.00 13.3 3.55 5.77 -0.728 -6.35X 1072 4.35 4.75
4B 1.01 1.40 20.9 1.75 10.1 20.8 5.75 9.71 -0.712 -1.35% 1072 4.81 5.77
4C 1.00 1.40 29.3 1.04 12.0 30.0 11.5 19.3 -0.653 3.14x 1074 4.87 6.03
3A 0.873 1.05 14.8 1.58 7.77 12.0 3.56 7.01 -0.479 -2.85X 1072 3.78 4.32
3B 0.934 0.835 26.4 1.99 10.1 17.7 5.56 11.0 —-0.465 -2.55X 1072 4.08 5.18
3C 1.01 0.733 43.2 1.22 12.9 25.9 9.67 19.5 -0.499 1.37X 1072 4.66 6.09
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FIG. 5. Variation the Loitsyanskii integrals normalized by the
initial values for Runs 3D, 4D, and 3G.

mg= f cos*(6,,)dQ,, (4.8)
where 6y, is the cosine of the angle between k and r and ),
is the solid angle in d dimensions. Then we chose the initial
energy spectrum of type II which had the spectral slope d
+1 at low wave numbers, and k, was chosen to be relatively
large as 16, while keeping the Reynolds numbers moderate.
The curve for run 3G in Fig. 5 is for reference of the accu-
racy of the computation, in which ky=32 and larger grid
points were used. The curves are approximately constant at
about kyuyt >4, and correspondingly to this, the energy fol-
lows the power-law decay as seen in Figs. 4. Although it is
not described in this paper, a few decay runs in 3D which
started from the initial energy spectra such as E(k,0)«k™,
m=06 and 8 for small wave numbers were also made. It was
found that the energy spectrum approached k%! for low
wave numbers. Therefore we conclude that the Loitsyanskii
integrals are approximately constant at late stage of evolu-
tion in both 3D and 4D within the range of Reynolds num-
bers studied here, and thus the decay of the total energy of
turbulence obeys presumably the same law irrespective of
the spatial dimensions.

TABLE IV. The scaling exponents of the longitudinal and
spherical velocity differences in 3D (Run 3C) and 4D (Run 4C).
The exponents are evaluated as the averages over the region A <r
<L indicated by arrows in Figs. 19 and 20. The standard deviations
are estimated as 02=3,(x;—X)?/(n—1) with n being the number of
data points.

q 45;) d;&) 223) 224)

1 0.363+0.001 0.371+0.003 0.364+0.002 0.357+0.001
2 0.696+0.002 0.704+0.002 0.697+0.002  0.690+0.001
4 1.277+£0.003  1.259+0.004 1.272+0.004 1.288+0.002
5 1.530+0.006 1.48+0.01 1.516+£0.009 1.556+0.006
6 1.76+0.01 1.69+0.02 1.73+0.01 1.80+0.01
7 1.97+0.02 1.87+0.03 1.92+0.02 2.03+0.02
8 2.17+0.02 2.045+0.03 2.09+0.03 2.23+0.03
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FIG. 6. Variation of the energy dissipation rate normalized by
the initial value.

D. Isotropy

Most of the decaying DNS are done for the initial energy
spectrum with ky=4 or 16. In order to make the deviation
from the isotropy at low-order moments small, when it is
necessary, the average over the ensemble of the initial ran-
dom velocity fields is taken. Although the precise numerical
data about the isotropy of the turbulence fields in the present
DNS are not available, we infer the isotropy of the low-order
moments from the facts that (1) the variances of the velocity
gradients [O'(Ld)]2=<(&u, /dx,)?) and [O'(Td)]2=<(&u, /dx,)?) in
Table III satisfy quite well the relations

2 2
()3 o
(7.X2 d-1 ox 1

which are obtained from the homogeneity, isotropy, and in-
compressibility conditions, (2) the small values of the skew-
ness of the transverse velocity gradients in Table III, and (3)
the small values of the third-order moments of the pressure
gradients ((dp/dx,)?) in Table V, which should vanish under
the isotropy. Therefore we consider that the isotropy of the
turbulence field at small scales is at least well satisfied at
low-order moments.

E. Energy dissipation rate and energy transfer

Variation of £ (¢)/&%(0) in time is shown in Fig. 6. The
dissipation rates attain their maximum value at about kquyt
~2 or 3. Initially, the ratio £%(0)/&®(0) is about 4/3, but
later 4(r)/&*%(0) becomes larger than £)(r)/£¥(0). When
the Reynolds number becomes larger, the initial increase of
gW(1)/£*(0) becomes more significant than for 3D although
R\ (0) in run 4F is about 20% bigger than that of run 3F.
Corresponding to this, we can see in Fig. 7 that the normal-
ized energy transfer flux function IT,(k,7)/&¥(z) is larger in
4D than in 3D for almost all wave numbers. We have ob-
served the same tendency for other runs. These facts mean
that the energy transfer in 4D is more efficient than in 3D,
which is also consistent with the prediction of the spectral
theory.
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FIG. 7. Comparison of the normalized energy transfer flux at
kouot=0.96 and 2.4 for runs 3E and 4E.

Let us look at the variances of the longitudinal and trans-
verse velocity gradients in Table III. As expected from Eq.
(4.9), in 3D turbulence, the variances of the transverse ve-
locity gradient du,/dx, are twice as large as those of the
longitudinal ones du;/dx; (Runs 3A and 3C), on the other
hand, in 4D turbulence, the variances of the transverse ve-
locity gradient are 5/3~1.67 times as large as those of the
longitudinal ones (Runs 4A and 4C). Moreover, the ratio of
the variance of the longitudinal to that of the transverse ve-
locity gradient tends to unity as the spatial dimension d.

Although there is some difference in R\ for Runs 3C and
4C, these observations suggest that the longitudinal motion
of the flow field in 4D is more responsible for the energy
transfer than in 3D, and bears an implication of the intermit-
tency of the longitudinal velocity gradient stronger than that
of the transverse one. In fact, we have observed that the
probability density functions (PDF) normalized by the stan-
dard deviation of the longitudinal velocity gradient in 4D
have slightly wider tails than in 3D, while the normalized
PDF’s of the transverse ones in 4D collapse well to those in
3D (figure not shown).

F. Skewness and flatness of the longitudinal velocity derivative

The skewness and flatness of the longitudinal velocity de-
rivative are defined as

PHYSICAL REVIEW E 75, 016310 (2007)
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The skewness S is a measure of the generation of small
scales of motion and the energy transfer by the nonlinear
term, while the flatness measures the sharpness of distribu-
tion. It follows from Fig. 8 that S is bigger than S®. Again
this is consistent with the more efficient energy transfer in
4D than in 3D.

In Fig. 9, we observe that the flatness factors in both
dimensions behave similarly; they start from 3, attain their
maxima, and then tend to constants which are larger than 3.
It should be noted that the Reynolds number dependence of
@ and K™ is slightly stronger than in 3D.

G. Energy spectrum

Figure 10 is a collection of the energy spectra of all runs
for both dimensions in the Kolmogorov units. Collapse of
the curves in both dimensions is satisfactory, which means
that the Kolmogorov scaling (3.10) holds in both 3D and 4D.
R, is too low to see the inertial range in the present DNS’s.
The spectrum in 4D looks the same as in 3D, but the levels
of the curves of 4D at wave numbers of the inertial effect

TABLE V. Low-order statistics of the pressure gradient.

Run kouot Ry ((Vp)?) g-3212((Vp)?) S3(V,p) K4(V,p)
3A 2.0 15.4 10.5 1.43 -1.31%x 1072 5.21
3A 2.4 14.6 8.20 1.36 —-5.64 %X 1072 5.43
3A 2.8 13.9 6.40 1.31 -9.77 X 1072 5.52
4A 2.0 14.3 12.5 0.804 -3.85% 1072 5.38
4A 24 13.1 9.19 0.740 —2.64 %1072 5.40
4A 2.8 122 6.62 0.692 -1.14x 1073 5.36
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FIG. 9. Variation of the flatness K@ in three and four
dimensions.

dominant are lower than those of 3D. This is also consistent
with the theoretical prediction in Sec. III. The inserted guid-
ing lines represent the curves K, (k7)™ with the Kolmog-
orov constant K;=1.31 in 4D and K3;=1.72 in 3D, respec-
tively. The reason for the lower value in 4D is that the energy
transfer rate is larger in 4D.

V. KARMAN-HOWARTH-KOLMOGOROV EQUATION

The dimensional dependence in turbulence is well eluci-
dated in the Kdrméan-Howarth-Kolmogorov (KHK) equation
[33-35]. The equation for arbitrary dimension d in decaying
turbulence is given by

E@v) ™

10—4 L . i

1072 107 10°
kn

FIG. 10. A collection of the energy spectra in the Kolmogorov
units for 4D and 3D. Solid lines: 3D, dashed lines: 4D. All the
curves are taken soon after the enstrophy attains maximum. Runs
3A(R\=13), 3B(R\=26), 3C(R),=43), 3F(R\=66), and runs
4A(Ry=14), 4B(R)=20), 4C(R)=29), and 4F(R\=64). The levels
of the curves of 4D at wave numbers of the inertial effect dominant
are lower than those of 3D. Straight lines stand for K, (k7)~>3, with
the Kolmogorov constants K3=1.72 (solid) and K4=1.31 (dotted),
respectively.
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FIG. 11. A plot of each term in KHK equation for 4D (Run 4A)
r')

divided by ¥ at kougr=2.0, where G(r)——#,ﬂf0 —— (") ar’.
oDy (r) 3 f DL (r')
D —6r———+ 7 ar'
LLL(r) v ar rd+1 ot ( )
12e
=- —Sr, (5.1)
dd+2)

where D;; =(u?) and D;;;=(u’) are the second- and third-
order structure functions for the longitudinal velocity incre-
ment u,=F-[u(x+r)—u(x)].

In the inertial range at infinite Reynolds number the sec-
ond and third terms on the left-hand side of Eq. (5.1) can be
neglected, so that D;;;,=—(4/5)&er for d=3, while —(1/2)&r
for d=4. In the low Reynolds flows, however, all the terms
must be retained. Figure 11 represents each term in Eq. (5.1)
divided by £%r; the KHK equation is quite satisfied as it
should be. For comparison, we depicted the 3D version in
Fig. 12 which is in agreement with the previous reports in
DNS [26,33,36]. Note that comparisons here and in the fol-
lowing sections are made at the time soon after the enstrophy

10! .
10° b R EB-0-8-568
ST
,-k"""):z&*@x v
o kX
107 E . o
2 LK
£ " ¥
feb
. 1072+
_DLLL/E" '
* [6voD, /for]ier — v .
103k Goye 4?
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2 —
107 ,
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R

FIG. 12. A plot of each term in KHK equation for 3D (Run 3A)
divided by £¥r.
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has attained peak values. The turbulence parameters for com-
parison at these times are listed in Table III.

The skewness S(r) for the structure function in the in-
ertial region is evaluated in the following way. Since
D, (r)==12&r/d(d+2) and D;,(r)=C,(gr)*3, where C, is
connected to the Kolmogorov constant as C,
=2.56I'(d/2)K,/T'(d/2+4/3) [Eq. (C5) in Appendix C], the
skewness becomes

S0 = 12 (F(d/2+4/3)

372
K (5.2
d(d+2)\ 2.56I(d/2) ) d (52)

The factor in front of K"dy % is a slowly increasing function
of d, so that the d dependence of SY(r) is mostly affected by
Ky S9(r)=—0.39 in 4D and -0.23 in 3D. When the
asymptotic value of K,,=0.815 is used in Eq. (5.2), we have
™) (r)——-0.995 in the large d limit, which is finite. The
skewness of the velocity derivative is estimated from
S(r) in the limit r— 7. Reference [29] indicates that
IS (r)| increases as r decreases, resulting in the satisfactory
agreement with the observation.

VI. PDF’S OF THE ENERGY DISSIPATION RATES

Since Landau’s comment that the spatially inhomoge-
neous distribution of the energy dissipation rate may affect
the scaling, PDF of the energy dissipation rate has drawn a
lot of attention. In this context we investigated the PDF of
the dissipation rate in 4D, in comparison with the 3D one. To
cope with the fluctuations for large amplitudes, we intro-
duced the cumulative distribution function (referred to as
CDF hereafter) denoted as

P(>x) = J” P(x")dx'.

For the energy dissipation rates we introduce three types,
because each distribution differs significantly from the oth-
ers. The first one is the total energy dissipation defined by
Eq. (2.5), the second the dissipation associated with the de-
rivatives along x direction, and the third the surrogate one
usually employed in the experiment:

. 2
ei(x) = v (Z—ZL) , (6.1)
i,j i
2
£2(x) = vd >, (%) : (6.2)
j 1
2
e5(x) = vd(d + 2)(%) : (6.3)
X1

The coefficients are chosen in such a way that all the aver-
ages of the above expressions are equal to €. In Fig. 13 we
depicted the CDF’s of g, &,, and &5 in 4D, where the ab-
scissa is normalized by &. The CDF’s become broader in the
sequence of g, &,, and &5. It seems that the three types of the
dissipation rate have been used interchangeably without pay-
ing much attention to the differences [37,38,44].

PHYSICAL REVIEW E 75, 016310 (2007)

0 5 10 15 20

FIG. 13. CDF’s of three types of the dissipation rates in 4D. The
abscissa is normalized in terms of £. The CDF for & is the narrow-
est in the tail (Run 4A).

Figure 13 indicates that this usage is right only for the
lower moments of the dissipation rate. Those CDF’s for 3D
show the same trend as for 4D (not depicted here).

In Fig. 14 we depicted the CDF’s of &, and &5 for 4D in
parallel to those for 3D. The finding is that the CDF of ¢ is
much narrower in the tail in 4D than in 3D, while the CDF of
the longitudinal components &5 is slightly broader in 4D than
in 3D. The latter observation is consistent with the consider-
ations discussed below on the longitudinal velocity differ-
ence, although further careful investigation is needed. The
CDF’s for &, are almost the same for both dimensions, al-
though they are not added to Fig. 14 for clarity.

VII. DISTRIBUTION OF THE VELOCITY INCREMENTS
AND THE REFINED SELF-SIMILARITY
HYPOTHESIS

When we consider the distribution of the velocity differ-
ences, they are mostly limited to the longitudinal and trans-

15 20

FIG. 14. CDF’s of &, and &5 for 4D (Run 4A) and for 3D (Run
3A) at kouot=2.0. The abscissa is normalized in terms of &.
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verse ones. However, the above observation on the CDF’s of

the dissipation rates suggests that various types of the veloc-

ity differences are possible by extending the derivatives in

Egs. (6.1)—(6.3) to the finite differences over a distance r as
du; . uj(x +re;) —u;(x)

ox; r

where e; is a unit vector along i direction. Hence three types
of velocity differences are defined:

f= 2 [uilx + re) = u(x) P, (7.1)
= E [u4;(x + rey) = u;(x) 1, (7.2)
ty=[u(x + re;) —uy (x) . (7.3)

Hence 14, t,, and #5 are the velocity differences corresponding
to €, €,, and &3 defined in Egs. (6.1)—(6.3). ¢; represents the
square of locally isotropic velocity differences over a scale r,
which is referred to as the spherical velocity differences
hereafter and responsible for the energy transfer in a scale
space. Note that 75 is associated with the longitudinal veloc-
ity difference and #, is with the sum of longitudinal and
transverse differences.

Before presenting the CDF’s of three types of the velocity
increments we discuss the differences in those increments.
Although our simulated turbulence is isotropic in the statis-
tical sense, each domain of the strongly excited velocity
fields is highly anisotropic locally. Then the velocity incre-
ment in a particular direction, say along the x direction, is the
strongest, so that fluctuations of #; (and #,) become larger,
while #; would fluctuate more gently than for #; because ¢, is
a local sum over all directions and components, the local
average. The isotropic sector of the structure functions of the
above three types of the velocity increments can be analyzed
in terms of SO(d) decomposition as proposed by Arad et al.
[39-41], but here we simply examined them by taking the
spatial average over three (or four) directions for #, and f4
because of computational cost.

Figure 15 depicts the CDF’s of the velocity differences ¢,
at various scales for 4D, indicating that the tail becomes
narrower as the scale r increases. The CDF’s of 1, and #; are
given in Figs. 16 and 17. Although the trend of the scale
dependence in f, and #; is the same as for ¢, the decrease in
the tail in 75 is the slowest indicating that 5, the longitudinal
difference, is still very intermittent even at large r. Hence the
scaling exponents of the structure functions of #; are ex-
pected to be very different from those of #;. Similar trends
are found for 3D, although the relevant figures are not pre-
sented here.

Figure 18 is a collection of the CDF’s of ¢, and #; for
almost the same scale; r/ #=8.43 in 4D and r/ p=7.44 in 3D.
We found that the intermittency is weaker in the spherical
velocity difference #; for 4D than for 3D, while the intermit-
tency of the longitudinal velocity difference t; is slightly
stronger for 4D than for 3D. Those tendencies are consistent
with what are observed for &, and &5.
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FIG. 15. CDF’s of #; at various scales r in 4D (Run 4A). The
abscissa stands for the normalized variable in terms of the mean
value.

It is very important to examine the refined self-similar
hypothesis under the change of the spatial dimensions. The
scaling in the longitudinal velocity difference has extensively
been studied. It is anticipated that the intermittency for the
velocity increments is related to that for the energy dissipa-
tion rate through the refined self-similarity hypothesis
[42,43]. The longitudinal velocity difference u, over a dis-
tance r is related to the volume-averaged energy dissipation
rate &,(x)=V,"'[ v &(x)dx, where V, is a volume over a sphere
of radius r centered at x, as

u,~ (re,)'"”.

Hence the less intermittent the (total) dissipation rate, the
less so the longitudinal velocity increments, in contradiction
with the present observation. There are two ways to reconcile
the refined self-similarity hypothesis with the observations:
(1) &5 should be used as the dissipation rate or (2) #; should
be used as the velocity difference.

108

1074 |

105

1076

]

FIG. 16. CDF’s of 1, at various scales r in 4D (Run 4A). The
abscissa stands for the normalized variable in terms of the mean
value.
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169

FIG. 17. CDF’s of 13 at various scales r in 4D (Run 4A). The
abscissa stands for the normalized variable in terms of the mean
value.

The above story also helps us to settle the long standing
arguments as to which the one-dimensional dissipation sur-
rogate or the full dissipation describes better the intermit-
tency of the velocity increments [37,38,44]. By increasing
the spatial dimensions we can find the physically relevant
way to relate the velocity increments ¢; to &;.

It is important here to note the anistopy effects. One may
think that since the present DNS results are those of the
decaying DNS, there might be some effects of the anisotropy
arising from the relatively smaller sample sizes when com-
pared to the case of the studies using steady turbulence.
However, as we discussed before, the above analysis was
done for the ensemble average over the several initial veloc-
ity fields, especially for 3D. For 4D, the statistical conver-
gence is much better than in 3D because of the dimension 4.
Therefore we infer that the effects from the anisotropy are
minimized, although further examination about the aniso-
tropy would be necessary.

Ly I

10 15 20

FIG. 18. CDF’s of ¢, and #3 at r/ 7=8.43 in 4D (Run 4A) and at
r/ 7p=7.44 in 3D (Run 3A). The abscissa stands for the normalized
variable in terms of the mean value.
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FIG. 19. Local scaling exponents g“” for the longitudinal struc-
ture functions in 4D (Run 4C) and 3D (Run 3C). The regions be-
tween two arrows are considered as the inertial effect dominant
range.

VIII. SCALING OF THE VELOCITY INCREMENTS

Although the Reynolds numbers of the present DNSs are
too low to observe the well-developed power-law behavior in
the structure functions of the velocity increments, it is still
interesting to see the general tendency of their scaling and to
compare them with that in 3D.

First we argue the scaling of the longitudinal velocity in-
crements, and then, the scaling of the spherical velocity in-
crements. In order to obtain the reliable result of the structure
functions, we process the data on one run (R,=29.3) on
meshes 128* in 4D, and on six runs (R,=43.2) in 3D. In the
following we limit ourselves to the structure functions up to
order g=8 [45].

The longitudinal structure functions are defined for the
velocity difference u,=F-[u(x+r)—u(x)] as

SOy = (lu |, (8.1)

where the absolute value is used instead of u, as usual to
cope with the slow convergence of the moments of odd or-
ders. When the structure function obeys power law, we write
as

(d)

L\&
s;‘”<r>=c§f’>(§r>q’3<—) L (8.2)

r

Since R, is too low to observe the inertial range (N/7%
~10, L/ p~30), we must use the ESS method [11] to com-
pute the scaling exponents §£}d). The local exponents calcu-
lated as
(d)
g(d)( r)= M
a d log Sgd)(r)

are given in Fig. 19; {i;‘)< 53) for g=4, while §<4)> 5;) for
g <72 as seen in the inset. Thgs result means that tlt{le intermit-
tency is stronger in 4D than in 3D as far as the longitudinal
velocity increment is concerned.
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FIG. 20. Local scaling exponents Zf]d) for the spherical structure
functions in 4D (Run 4C) and 3D (Run 3C). The regions between
two arrows are the inertial effect dominant range.

In the above we argued that the total dissipation rate is
related to the spherical velocity differences defined in (7.1).
Hence the associated structure functions are defined as

590 = (1,() ™). (8.3)

The scaling exponents Z(d) for the spherical velocity dif-
ferences were calculated similarly as before by using the
ESS method:

Sl
Fapy = 41085 (1)
! dlog Sgd)(r)

Figure 20 shows that fo) > fo) for g=4, while ng < Zf) for
g =<2 as seen in the inset. This result means that the intermit-
tency is weaker in 4D as far as the spherical velocity incre-
ment is concerned.

An inspection of Figs. 19 and 20 reveals that the behavior
of the local scaling exponents in the spherical exponents
(Fig. 20) is different from that in the longitudinal ones (Fig.
19). The former exponents are slightly increasing with r,
whereas the latter ones are decreasing. This suggests that the
longitudinal and spherical velocity differences may play a
different role in a scale space of the energy cascade. For the
longitudinal velocity difference over r the third order struc-
ture function scales proportionally to 7 as known in the KHK
equations (5.1), supporting the ESS method in a renormal-
ized sense. The third-order structure function of the spherical
difference, on the other hand, is not directly related to the
energy transfer rate, so that the ESS is not strictly justified
for the spherical difference.

Even if we take into account the opposite trends of the
local scaling exponents of both velocity differences, we are
certain that Z(:) > gf;‘) for g=4 and Z(;) < g;‘” for ¢ =<2, where
the exponents are evaluated as the average values over the
region A <r<L; the numerical values are listed in Table IV,
where the estimated errors are included. This indicates that
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P(x)

FIG. 21. PDF of eigenvalues in 4D (Run 4A). The abscissa is
normalized in terms of \,Ei(()\g4))2>=\f§(4)/ V.

the spherical velocity differences are less intermittent than
the longitudinal ones, consistent with the observed trend for
the various dissipation rates.

If the curves of 5513) and Z((; ) are plotted in the same graph,
it is easily seen that they cross each other for A <<r<L.
Hence we are not certain about the inequality between :(;)
and Z@) at this moment. The simulation of high Reynolds
number flows will elucidate the relation between those expo-
nents. However, the following inequalities are confirmed in
the present analysis:

F4) <, F3) (3) 5 A4
{ﬁi >§(, &, >¢,, forg=4.

Hence the discrepancy between 224) and 424) is larger than

that between ZS) and 5513)-

IX. DISTRIBUTION OF THE EIGENVALUES OF THE
STRAIN TENSOR

According to (2.8) the 2-form ();; is amplified by —(\,
+\;). In three dimensions w;={),; is amplified by —()\(23)
+)\(33)):)\(13). Hence the distribution of eigenvalues is neces-
sary to understand the microscopic structure of {);;. First we
consider the distribution in 4D, where the eigenvalues are
sorted as )\(14)>)\<24)>)\(34)>)\i4). The averages and the
second-order moments of \;" are

AMy=6.60, (\Wy=325,

APy=-035, (\)=-9.49,
(A2 =47.88, ((A)2)=12.96,

(A =355 (W) =106.22,
respectively. The PDF’s are shown in Fig. 21, where the
abscissa is normalized in terms of \/2i<()\54))2>= V&®/v. For

the sake of comparison we depict the PDF in 3D in Fig. 22,
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FIG. 22. PDF of eigenvalues in 3D (Run 3A). The abscissa is
normalized in terms of \E,-<()\l(.3))2>= Ve /v,

where the eigenvalues are sorted as A ) > )\(3 >N ). the av-
erages and second moments of A~ 4 a
APy =5.74,

ah=151, APy=-7.24,

(A =37.40, (W) =598, (A2 =63.48,

respectively. The abscissa is also normalized in terms of
VELO)H=\ED v,

The following findings are obtained from the comparison
of the PDF’s of the eigenvalues in both dimensions. (1) The
PDF of )\ is similar to that of )\ ) The tail is a little bit
narrower in 4D as compared with 3D (2) The PDF of )\(4)
very close to )\ ). (3) The probability of )\ bemg negative
is considerably small (4) The PDF of )\(4 is almost evenly
distributed on the positive and negative s1des

An interesting comparison was found for the PDF’s of
fused eigenvalues. We fused the first and second eigenvalues

in 4D in such a way A, “ +)\(4 =\ \Y: the evaluated average
and the second-order moments are <)\14)>—9.84, (()\(14 )2)

=106.77. Then we have three elgenvalues ):(4), )\(34), and )\24),
which are compared with )\(3) A ) and )\(3 in 3D. Figure 23
shows the comparison of P()\(l4) with P()\(1 ), where the ab-
scissa is normalized in terms of <():(l4))2> and (()\(13))2), respec-
tively. It is surprising that the both PDF s are very close to
each other. This means that )\(4 and )\ ) seem to degenerate
into )\(3) when the d1men510ns decrease from four to three.
Slmllarly we fused the second and third eigenvalues, denoted
as )\<24)+)\g4)5 ):;4) [():(24>>=2.90, (():;4))2)= 16.05], to compare

the PDF of X(24) with the PDF of )\(23) in 3D. The agreement is
also good except for the left tail. Finally we constructed the

PDF of the summed eigenvalue )\(34) and )\24) denoted as ):(34>

[():(4 y=-9. 84 ((Xg4))2)=106.77], which is compared with
the PDF of )\ )in 3D. The agreement is good except for the
position of peaks
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10° . ; : . .
. Ar+la(4d)
23d) -
_ 13+)‘.4(4d)
L
107 ¢ 23(3d) ]
S\ o+ Aa(4d)
1072
=03l
= 10
1074 L
1075 ¢+
1076
-15 15

FIG. 23. The comparison of PDF’s of the fused eigenvalue
)\(4)+)\( in 4D and )\(3) in 3D for n=1,2,3. The abscissa is nor-

n+l

malized in terms of \/((X§4))2> and \/(()\5.3))2).

X. DISCUSSION

It is interesting and important to see the effects of the
spatial dimension d on the variance of the pressure gradients.
For this purpose we use the quasinormal approximation and
the result normalized by the Kolmogorov variables is given
by

ay =& (Vp)?) =M,y f J léﬁid(
0 J0

i T

)f(ﬁ)f(é)dﬁdé,
(10.1)

where Eq. (A17) is used, and the geometric factor M is
given by Eq. (A16). Since the leading term of the function

J,(x) is x, the integral of the right-hand side of Eq. (10.1) is
assumed to be weakly dependent on d. Then dimension ef-
fects are predominantly due to the geometric factor M,. For
example, M;/M4=1.92. Table V shows comparison of the
normalized variance, skewness, and flatness of the pressure
gradient for Runs 3A and 4A during their decay. The ratio
ﬁ%/ 63 is close to but about 10% smaller than 1.92. The dis-

crepancy is due to the neglect of d dependence in J 4 and the
intermittency effects. The skewness’ are very small and the
flatness’ are almost the same for both dimensions. Indeed the
normalized PDF’s for the pressure gradients in 3D and 4D
are close to each other. It is quite interesting to observe that
the normalized variance of the pressure gradient becomes
smaller as d increases, although it is not certain that this
trend survives at larger Reynolds numbers. This is consistent
with the prediction from the spectral theory. A relatively
smaller pressure gradient implies more persistent memory of
fluid blob along the Lagrangian trajectory, and leads to the
effective energy transfer of the energy to smaller scales. On
the other hand the longitudinal velocity gradient becomes
more intermittent in 4D while the transverse ones become
weaker or remain unchanged.
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How do we reconcile these observations? The incom-
pressibility condition and the Navier-Stokes equation in d
dimensions are written as

u du du
_1+_2+ 9a _

=0, (10.2)
ax;  Ixy oxy
au; au; au; ou; dp 2
—tuT—tuy—+ - +ug;—=———+1vVu,.
ot oxy 0xy oxy ox;
(10.3)

When d increases, the incompressibility condition becomes
less restrictive, so that there arise more chances that each
longitudinal derivative can develop relatively larger ampli-
tudes than would be for smaller d-dimensions. Now consider
the convective and pressure terms in the Navier-Stokes equa-
tion. There is one longitudinal velocity gradient and d—1
transverse ones. When large amplitude of the longitudinal
velocity gradient occurs, d—1 transverse terms can compen-
sate this large squeezing or stretching action so that the sum
of the convective terms, as a whole, becomes smaller and can
balance with the smaller pressure gradient [46,47]. In the
large limit of d, the chances are large that there exist one
extreme longitudinal convective term such as u;du;/dx; and
many transverse convective terms with smaller amplitudes.
The total of the convective terms would tend to obey the
central limit theorem. Their sum yields the small value, and
becomes comparable with the small pressure gradient. At the
same time contributions from the viscous term become rela-
tively larger. This picture resembles well the dynamics of the
Burgers turbulence in which the pressure term is absent and
the convective term must balance the viscous term, which
leads to the formation of shocks and stronger intermittency
[35,48,49].

The dissipative structure inferred from the above picture
is also consistent with the CDF’s for ¢;,&5. The convection
dominant-dynamics of turbulence in high d dimensions
steepens the longitudinal velocity gradient, then the longitu-
dinal derivative du,/dx; becomes very strong in shock re-
gions, implying that the &5 is broad in the tail as seen in the
CDF’s of &5 in Fig. 14. In the region where &5 is strong, the
other transverse components in &, are rather weak but the
numbers of those terms are large enough such that &; tends
to fluctuate gently around its mean in the sense of the central
limit theorem.

The above picture explains also the observations about the
velocity structure functions. When the sum is taken over the
components, the energy dissipation or the pseudospherical
structure function #; become less intermittent because of the
number effects of components in the sense of the central
limit theorem, for example, d(d+1) for 9, while the statis-
tics of the longitudinal component such as &3 and 73 become
more intermittent.

XI. SUMMARY

We have studied isotropic decaying turbulence in four di-
mensions. The purpose of the study is to broaden our scope
on turbulence by relaxing the dimensional constraint. Em-
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phasis was put on the energy dissipation rate, the energy
transfer, and the intermittency. When the spatial dimension is
increased from 3 to 4, there seems nothing dramatic. Rather,
change of the nature of turbulence is gradual. However, we
have found a number of important points which are useful to
reconsider the physics of real turbulence in three dimensions
where we live in. They are summarized as follows.

(1) Despite the existence of an infinite number of the in-
viscid invariants in four dimensions, the energy is transferred
toward the small scales of motion due to the stretching term
of velocity 2-forms.

(2) Loitsyanskii integrals are approximately constant at
late stage of evolution in both 3D and 4D, and the decay of
the total energy of turbulence, presumably, obeys qualita-
tively the same law irrespective of the spatial dimensions.

(3) However, quantitatively, there are differences in the
energy transfer. The energy transfer by the nonlinear terms is
more efficient in 4D than in 3D, so that the energy decays
faster than in 3D and the decaying exponent in 4D is larger
than in 3D, consistent with the argument in terms of the
Loitsyanskii integrals.

(4) Efficient energy transfer is also predicted by the spec-
tral theory of turbulence. The Kolmogorov constant in 4D is
K,=1.31 and tends to the finite value K.,=0.815 for large d.

(5) Both DNS and spectral theory show that the variances
of the pressure gradient decrease with increase of the spatial
dimensions.

(6) In the four dimensions, Kolmogorov’s 1/2 holds,
which has been confirmed by the DNS when all the terms
concerning the energy budgets are taken into account.

(7) The intermittency of the longitudinal velocity incre-
ments and velocity gradient becomes stronger in 4D than in
3D, while the transverse velocity gradients and the spheri-
cally averaged structure function of the velocity increments
becomes less intermittent in 4D. The longitudinal motion of
the velocity field becomes more responsible for the energy
transfer in higher spatial dimensions.

(8) Therefore the one-dimensional surrogate of the en-
ergy dissipation exhibits stronger intermittency than it would
for the full energy dissipation. This difference is attributed to
the effects of the number of terms, the real dimension effects.
This suggests that the refined Kolmogorov theory needs to be
formulated in terms of appropriate variables, that is, the one-
dimensional surrogate energy dissipation to the structure
functions of the longitudinal velocity increments, or the full
energy dissipation to the spherically averaged velocity struc-
ture functions.

(9) Increase of the spatial dimension leads the incom-
pressibility condition less restrictive and more chances of
extreme events for d-longitudinal velocity gradients and
d(d—1) terms of moderate transverse gradients. The pressure
term becomes less important while the role of the viscous
term increases. An implication is that the turbulence dynam-
ics tends to follow the Burgers turbulence in large dimen-
sions.

(10) From the above arguments, if the 4D energy spec-
trum E(k) is computed (or measured) at high but finite Rey-
nolds numbers, the intermittency effect on K; would be
smaller than that in 3D because of dimension effects. How-
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ever, if we compute the one-dimensional energy spectrum
E,(k;) in 4D with the one-dimensional surrogate energy dis-
sipation, the effects of the intermittency would be stronger
than that in 3D.

(11) The PDF’s of the eigenvalues of the rate of strain
tensor in 4D are found to be similar to those would have
when the middle peak of the PDF in 3d is split into two
peaks.

What the above findings tell us is probably that the lon-
gitudinal velocity component plays a key role in the energy
transfer than for the transverse one, which may be a good
reason for the robustness (or universality) of the scaling ex-
ponents of the longitudinal structure functions, finding the
same values irrespective of the differences in experimental
and DNS conditions. Also we have to keep in mind in which
sense we study the intermittency, the intermittency in one
velocity component (one-dimensional surrogate dissipation)
or the spherically averaged velocity (and the total dissipa-
tion). So far there have been many arguments in which the
above difference has not been well recognized.

The DNS data and trends found in the present study were
taken at relatively small or moderate Reynolds numbers, and
therefore, should carefully be read. It is certainly indispens-
able to examine the above arguments at higher Reynolds
numbers. For this purpose, the steady turbulence maintained
by some energy injection mechanism is necessary. The work
is in progress and will be reported.
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APPENDIX A: LRA EQUATIONS

The Lagrangian renormalized approximation, which is
free from any adjustable parameter, enables us to calculate
the Kolmogorov constant K, for any dimension [10,22]. To
understand the key points of the LRA is very useful to inter-
pret the results of the spectral theory and to understand the
dynamics and statistics of the d-dimensional turbulence.
Therefore, we briefly describe the essence of the theory.

1. Fundamentals of the LRA

Lagrangian generalized velocity v(x,s|f) is defined as the
velocity measured at time ¢ of a fluid particle whose trajec-
tory passes X at time s. Time argument ¢ right of the vertical
bar is called the measuring time while the time argument s to
the left is the labeling time following Kraichnan’s Lagrang-
ian history direct interaction approximation (LHDIA) [50].
The dynamics of v(x,s|#) with respect to the measuring time
is given by
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x,5)[— Vp(y,1) + vVu(y,t)]dy,

(A1)

ov(x,s|r)
ot

mel) [y,

where (y.t|x,s)=8Uy-2Z(x,s|1)) is the Lagrangian posi-
tion function and Z(x,s|?) is the position of the fluid particle
at time ¢ whose trajectory passes x at time s. At high Rey-
nolds numbers, the viscous term is negligible when com-
pared to the pressure term, which means that the Lagrangian
acceleration of the fluid particle is dominated by the pressure
gradient. Fundamental quantities in the LRA are the energy,
the Lagrangian two-time velocity covariance, and the La-
grangian response function whose equations are symboli-
cally written as

2 ) ule ) = (A2)
ot
J
E(U(x,s Ho(x',s|s)y= -+, fort=s, (A3)
g(év(x,st)/z‘if(x',s s))y=---, fort=s, (A4)

respectively. For details, readers may refer to [22]. In homo-
geneous isotropic turbulence, it is convenient to work in the
wave number space. We define

1
Pll(k)Qlj(kaS t) = Eplj(k)Q(k,t,S), (AS)
Pil(k)Glm(k9S t)ij(_ k) = Pij(k)G(k’tss)9 (A6)
O(k,t) = Q(k,1,1). (A7)

The renormalized expansions yield a closed set of equations.
Then the LRA equations in the wave number space are the
energy equation

0
(a—t + 2vk2>Q(k,t) = 2Nk
Xf j dpdq(pq)d—Z(l _ x2)(d—3)/2b§5))q
A

XJ Gd(kvt’S)Gd(p7tas)Gd(q’t’S)Q(QNS)

0

X[Q(pvs) - Q(k,S)]dS, (AS)

bigy = %[d(z +xy) +22° =3z -xy], (A9)
_ Sa

Ne= T (A10)

the fluctuation-dissipation relation for the two-time velocity
covariance
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Q(k,[,s):Gd(k,t,S)Q(k,S,S), (All)
and the Lagrangian response equation
d
(&_t + Uk + Md(k,t,s))Gd(k,t,s) =0, t=s (Al2)

o0 t

pP ' N gt

Md(k,t,s):f dpkad<E)f G,p,t,s")E(p,s")ds’,
0 s

(A13)
T4(x) = Ml (), (A14)
xF(1,-d2,dl2+2,x%), x=<1

Jx)=J,(1/x) =1 1
a(x) = J(1/x) —F(1,-d2,dl2+2,1/x?), x>1
X

(A15)

48, d+3 1
a1 ( —), (A16)

T @d-1)2s,\ 2 "2

where F is Gauss’ hypergeometric function, B is the beta
function, and (x,y,z) are the cosines of the interior angles
opposite the triangle sides (k,p,q), respectively. As in 3D,
the detailed balance, and the energy conservation by the non-
linear term hold.

It is very important to anticipate the fact that correspond-
ing to Eq. (Al), the eddy damping factor u, in Eq. (A12)
arises from the Lagrangian mapping of the pressure gradient.
In fact, if the quasinormal approximation is applied to the
variance of the pressure gradient, we obtain

((Vp)*) = f J kad<§>E(p)E(q)dpdq, (A17)
0 0

which is identical to Eq. (8.3.20) of Batchelor [51].

The eddy damping factor u, is a key to the spectral dy-
namics. If we assume that the turbulence is in a steady state,
then G,(k,z,s) is a function of —s. Furthermore we truncate
F in Eq. (A14) at the zeroth order, i.e., F=1, and integrate in
time from infinite past to the present time ¢, we arrive at

k o0 1/2
pak) = \@< f p°E(p)dp + k* f E(p)dp> -

0 k
(A18)

This means that in d dimensions the eddy damping at scale
1/k is roughly given by the total strain from scales of motion
larger than 1/k and by the excitation of scales smaller than
1/k, which is consistent with the case in 3D.

If there exists the inertial range in the sense of Kolmog-
orov (1941) at very high Reynolds number, we have the fol-
lowing similarity form:

E(k) = K2k, Gyk,7) = G4 8" k*37), (A19)

where K, is the Kolmogorov constant in d dimensions, and
7=f—s. In the inertial range the energy transfer flux is ex-
pressed as
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4dS,.,

g=TI,(k) = K2 ———41__
¢ 4 d-1)25,M,

Ay, (A20)

1 u+l
A_d:f du log(1/u) dv® ,(1,u,v)D,(1,u,v),
0

max(u,|1-ul)
(A21)

where

D,(Lu,v)=(1- xz)(d_3)/2u_8/3[(l;(li)v + b o83

lvu

_ (l;(ﬂl,)vu“mv‘m + Bﬂ,vd_z)], (A22)

luv luv —

b\ =db\® = d<u2(1 -x%)+ g(zz3 -3z- xy)>,
(A23)

0, is the triple relaxation time defined by
0,(1,u,0) = f G ()G (u*P5)G (v s)ds,  (A24)
0

in which G,(0)=G (VM &"*k*37) obeys
dG ” . o _
ﬂ + (f dxx_m]d(x)f d§Gd(x2/3§))Gd(U) =0.
do 0 0
(A25)

A_d can be evaluated numerically so that K; is computed as
function of d as found in Fig. 1. The Kolmogorov constant
K, remains finite in the large limit of d.

2. Asymptotic behavior for large dimensions

When d is very large, the geometric factor b(l‘i)v and the
eddy damping factor w,; become

b ~ duP(1-x7),

luv

(A26)
4 (7 * A~ (p
Md(k,r)~g f ds’ f dpkam<z>E(p)Gd(p,S’)
0 0

4
= fo(k, 7), (A27)

J.(x)=T..(1/x) = (A28)

14+x

It is very interesting and important to see that

(1) in the large limit of d the geometric factor tends to
l;(l‘ffv=u2(1 —x?) which is given by the convective term alone,
(2) the eddy damping term arising from the pressure gra-

dients becomes small as d=2.

These two points suggest that in the large dimensions the
spectral dynamics comes to resemble that of the Burgers or
passive scalar turbulences.
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Equation (A12) of the response function for large d be-
comes

J
(a_g +dvk® + .k, §)>Gd(k, =0, &=7/d. (A29)
In the inertial range, the viscous damping term is negligible
when compared to the eddy damping term, which requires
v=o(1/d). (A30)

Alternatively this can be stated as follows. If the Kolmog-
orov scale is defined as the time at which the viscous dissi-
pation time becomes comparable with the eddy damping
term, then we have an estimate

3\ 1/4
v

~d3’4( ) )
Na z

(A31)

The Kolmogorov length in d dimensions increases with d*#,
implying that much higher Reynolds number is required to
attain the asymptotic inertial range, or the molecular dissipa-
tion effects become stronger with increase of the dimensions.

When the asymptotic form of the response function in the
large d limit is inserted into Eq. (A24), we obtain

(:')1,“, = lim O ,(1,u,v) =f g(5)gWs)g(v*3s)ds,
d—© 0

(A32)

g(s) = lim G(s), (A33)
d—o

and then substituting this into Eq. (A21) we arrive at

d-1328, [d+3 1)\ |-
K,= ( 2) dB( ,—) AT
4d%S,, 2 72

1/3
~ (72—T> (24,725, (A34)

In order to compute the integral A, we use the steepest de-
cent method for the integral over v. It follows that when d
becomes very large the geometric factor (1-—x2)@3/2
=[sin(6,)]“*”? has nonzero contributions only from the set
satisfying 6,~ 7/2, where 6, is the angle opposite to the side
k of the triangle (k,p,q). This means that there are two
paths; T'; is the path {(u,v):u*>+v?=1} for the first term in
the square brackets of Eq. (A22), and I',, {(u,v):v*=1+u?}
for the second term [6]. The results are

_ 2\ 12
()

1
1 A
I= f 10g<—)u‘5’3[(1 — )36, [TzH(2/2 - u)
0 u

(A35)

— 0, T ldu
= (0.680, (A36)

where H(x) is the Heaviside function. The numerical compu-

PHYSICAL REVIEW E 75, 016310 (2007)

tation of Eq. (A36) yields the asymptotic value of the Kol-
mogorov constant in the infinite dimensions as K.,=0.815
which is shown in Fig. 1.

As seen in the asymptotic analysis described above, the
increase of the spatial dimension implies that the number of
the triad interaction contributing to the energy transfer be-
comes fewer while the decay of the response function gets
slower so that the triple relaxation time becomes larger. As a
result both effects are compensated and lead to the finiteness
of the Kolmogorov constant in the large d limit.

APPENDIX B: LOITSYANSKII INTEGRALS AND DECAY
EXPONENT

The decay exponent might be interpreted in the following
way [29,30,32]. Let us put the typical velocity and scale as

u() ~ (t=1)",  €(1) ~ (1= 19)"*". (B1)

The decaying exponent, then, becomes n=—-2m. We have to
evaluate m. Suppose that the decaying turbulence is self-
similar, i.e., BLL(r,t):(u(x+r,t)u(x,t)}:f'f:ﬁz(t)f(r/f(t)),

where f is a certain function. If B;,(r) and By (r)=Cu(x

+r,t)u(x,t)u(x,t))fff decay faster than =42 and r~¢"! for
r— oo, the Loitsyanskii invariant L; defined by
L,(t) =2i*(1)S, f AR dr (B2)
0

is independent of r even in decaying turbulence [29,30,32].
Substituting Eq. (B1) into Eq. (B2) yields

Ld ~ ([ _ t0)2m+(m+1)(d+2)’

from which m=—(d+2)/(d+4). Hence the decaying expo-
nent becomes

n=2(d+2)/(d+4), (B3)

giving n=10/7 for d=3, while n=3/2 for d=4, which ac-
cord roughly with the fitted values n=1.35 for d=3 and 1.60
for d=4.

In order to express the Loitsyanskii integral in a spectral
theory we introduce the relation between the longitudinal
velocity correlation By, (r) in coordinate space and the trans-
verse correlation function Fyy(k)={|u(k)]>)(2m)¢/LL  in
wave number space. For arbitrary dimensions d we have

28, :
Fyy(k) = (z_dli f drrd—lBLL(r)f du(1 - MZ)(d—3)/2
) 0
in k 1
X (Msmkrr'u - d—_l[(l — p*)cos(kru)
—kru sin(kr,u)]) )

To this end the left-hand side is expanded in terms of power
of k? as

Fyn(k) = fo+ fik>+ -+ .

Expanding the right-hand side in powers of k* yields that
fo=0, while f; is nonzero:
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’7le2

6
fl = EW f drrd+lBLL(r). (B4)
r E +2

Thus the existence of the Loityanskii invariant is equivalent
to the existence of fi, i.e., Fyy(k)~k>. Then, the energy
spectrum must be E(k,t) o k%!,

APPENDIX C: THE RELATION BETWEEN THE
COEFFICIENTS OF D;,;(r) AND E(k)

Here we present some useful relations in d-dimensional

turbulence. First we define
D, (r)=Cy&r)", E(k)=Kzg%"". (C1)

Then
Dy(r) =2 ™ = 112(|u, (k) ?)
k

4 ki E(k)
=m dk | dk, I_E (1_COSk1’”)F-

Substituting dk | =S, k" *dk ,, we have

8S4-1

Dy (r)= —(d— DS,

J (1 — COS klr)Ad(kl)dkl,
0

where
d

L [2 2
(K + k%)(d’rl)/zE(\'ki +ky).-

Ad(kl) = f dkL
0

Substituting ¢>=kt+k* , gdg=k  dk, yields

(612 _ k%) (d-1)12
g E(q)

©

Ayky) =] dq
ky

n+1d+1)
27 2 )

1
= —-K —nk—n—lB<
5 a€ Ky

Then
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(C2)

45, K n+l1 d+1
m sy Jr,

" (d-1)s, 272
where
F”=J k]”‘l(l—cosklr)dkl. (C3)
0

Then after the partial integration we have

"=n(1—n)

Substituting n=2/3, we have F=2.01r*3:

F F(Z—n)sin(g(l -n)>. (C4)

Cy 8.04Sd_13<n+1 d+1>
K, d-1s, \ 2 2 )

We go further. Since S,=27%?/T'(d/2), we have

C I'(dr2
—d _ 2.56(—), (C5)
K, I'(d/i2+4/3)

where the formula B(x,y)=I'(x)I"(y)/I'(x+y) has been used.

Let us focus on a large value of d. The asymptotic form of
I'(z) is

1
log I'(z) ~ Z(log 27~ 1) ~z~log z

1 1 +1
+ (% + Z)[logz+log(z+ D]+ B log < .
Then we have
4
log'(z) —log T'(z +4/3) ~ - 3 log z.

Finally we are led to

C

=4 = 6,540 (C6)
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